Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
PLoS One ; 18(5): e0285979, 2023.
Article in English | MEDLINE | ID: covidwho-2324615

ABSTRACT

INTRODUCTION: At the start of the COVID-19 pandemic there was an urgent need to identify individuals at highest risk of severe outcomes, such as hospitalisation and death following infection. The QCOVID risk prediction algorithms emerged as key tools in facilitating this which were further developed during the second wave of the COVID-19 pandemic to identify groups of people at highest risk of severe COVID-19 related outcomes following one or two doses of vaccine. OBJECTIVES: To externally validate the QCOVID3 algorithm based on primary and secondary care records for Wales, UK. METHODS: We conducted an observational, prospective cohort based on electronic health care records for 1.66m vaccinated adults living in Wales on 8th December 2020, with follow-up until 15th June 2021. Follow-up started from day 14 post vaccination to allow the full effect of the vaccine. RESULTS: The scores produced by the QCOVID3 risk algorithm showed high levels of discrimination for both COVID-19 related deaths and hospital admissions and good calibration (Harrell C statistic: ≥ 0.828). CONCLUSION: This validation of the updated QCOVID3 risk algorithms in the adult vaccinated Welsh population has shown that the algorithms are valid for use in the Welsh population, and applicable on a population independent of the original study, which has not been previously reported. This study provides further evidence that the QCOVID algorithms can help inform public health risk management on the ongoing surveillance and intervention to manage COVID-19 related risks.


Subject(s)
COVID-19 , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Prospective Studies , Wales/epidemiology , Pandemics , Hospitalization , Algorithms
2.
Nat Med ; 29(1): 219-225, 2023 01.
Article in English | MEDLINE | ID: covidwho-2185962

ABSTRACT

How the Coronavirus Disease 2019 (COVID-19) pandemic has affected prevention and management of cardiovascular disease (CVD) is not fully understood. In this study, we used medication data as a proxy for CVD management using routinely collected, de-identified, individual-level data comprising 1.32 billion records of community-dispensed CVD medications from England, Scotland and Wales between April 2018 and July 2021. Here we describe monthly counts of prevalent and incident medications dispensed, as well as percentage changes compared to the previous year, for several CVD-related indications, focusing on hypertension, hypercholesterolemia and diabetes. We observed a decline in the dispensing of antihypertensive medications between March 2020 and July 2021, with 491,306 fewer individuals initiating treatment than expected. This decline was predicted to result in 13,662 additional CVD events, including 2,281 cases of myocardial infarction and 3,474 cases of stroke, should individuals remain untreated over their lifecourse. Incident use of lipid-lowering medications decreased by 16,744 patients per month during the first half of 2021 as compared to 2019. By contrast, incident use of medications to treat type 2 diabetes mellitus, other than insulin, increased by approximately 623 patients per month for the same time period. In light of these results, methods to identify and treat individuals who have missed treatment for CVD risk factors and remain undiagnosed are urgently required to avoid large numbers of excess future CVD events, an indirect impact of the COVID-19 pandemic.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hypertension , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/diagnosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Pandemics/prevention & control , COVID-19/epidemiology , Hypertension/complications , Hypertension/drug therapy , Hypertension/epidemiology , Risk Factors
3.
Vaccine ; 41(7): 1378-1389, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2184289

ABSTRACT

BACKGROUND: From September 2021, Health Care Workers (HCWs) in Wales began receiving a COVID-19 booster vaccination. This is the first dose beyond the primary vaccination schedule. Given the emergence of new variants, vaccine waning vaccine, and increasing vaccination hesitancy, there is a need to understand booster vaccine uptake and subsequent breakthrough in this high-risk population. METHODS: We conducted a prospective, national-scale, observational cohort study of HCWs in Wales using anonymised, linked data from the SAIL Databank. We analysed uptake of COVID-19 booster vaccinations from September 2021 to February 2022, with comparisons against uptake of the initial primary vaccination schedule. We also analysed booster breakthrough, in the form of PCR-confirmed SARS-Cov-2 infection, comparing to the second primary dose. Cox proportional hazard models were used to estimate associations for vaccination uptake and breakthrough regarding staff roles, socio-demographics, household composition, and other factors. RESULTS: We derived a cohort of 73,030 HCWs living in Wales (78% female, 60% 18-49 years old). Uptake was quickest amongst HCWs aged 60 + years old (aHR 2.54, 95%CI 2.45-2.63), compared with those aged 18-29. Asian HCWs had quicker uptake (aHR 1.18, 95%CI 1.14-1.22), whilst Black HCWs had slower uptake (aHR 0.67, 95%CI 0.61-0.74), compared to white HCWs. HCWs residing in the least deprived areas were slightly quicker to have received a booster dose (aHR 1.12, 95%CI 1.09-1.16), compared with those in the most deprived areas. Strongest associations with breakthrough infections were found for those living with children (aHR 1.52, 95%CI 1.41-1.63), compared to two-adult only households. HCWs aged 60 + years old were less likely to get breakthrough infections, compared to those aged 18-29 (aHR 0.42, 95%CI 0.38-0.47). CONCLUSION: Vaccination uptake was consistently lower among black HCWs, as well as those from deprived areas. Whilst breakthrough infections were highest in households with children.


Subject(s)
COVID-19 , Vaccines , Adult , Child , Humans , Female , Adolescent , Young Adult , Middle Aged , Male , Wales/epidemiology , COVID-19/prevention & control , Prospective Studies , SARS-CoV-2 , Breakthrough Infections , Health Personnel , Vaccination
4.
BMC Med Inform Decis Mak ; 23(1): 8, 2023 01 16.
Article in English | MEDLINE | ID: covidwho-2196242

ABSTRACT

BACKGROUND: The CVD-COVID-UK consortium was formed to understand the relationship between COVID-19 and cardiovascular diseases through analyses of harmonised electronic health records (EHRs) across the four UK nations. Beyond COVID-19, data harmonisation and common approaches enable analysis within and across independent Trusted Research Environments. Here we describe the reproducible harmonisation method developed using large-scale EHRs in Wales to accommodate the fast and efficient implementation of cross-nation analysis in England and Wales as part of the CVD-COVID-UK programme. We characterise current challenges and share lessons learnt. METHODS: Serving the scope and scalability of multiple study protocols, we used linked, anonymised individual-level EHR, demographic and administrative data held within the SAIL Databank for the population of Wales. The harmonisation method was implemented as a four-layer reproducible process, starting from raw data in the first layer. Then each of the layers two to four is framed by, but not limited to, the characterised challenges and lessons learnt. We achieved curated data as part of our second layer, followed by extracting phenotyped data in the third layer. We captured any project-specific requirements in the fourth layer. RESULTS: Using the implemented four-layer harmonisation method, we retrieved approximately 100 health-related variables for the 3.2 million individuals in Wales, which are harmonised with corresponding variables for > 56 million individuals in England. We processed 13 data sources into the first layer of our harmonisation method: five of these are updated daily or weekly, and the rest at various frequencies providing sufficient data flow updates for frequent capturing of up-to-date demographic, administrative and clinical information. CONCLUSIONS: We implemented an efficient, transparent, scalable, and reproducible harmonisation method that enables multi-nation collaborative research. With a current focus on COVID-19 and its relationship with cardiovascular outcomes, the harmonised data has supported a wide range of research activities across the UK.


Subject(s)
COVID-19 , Electronic Health Records , Humans , COVID-19/epidemiology , Wales/epidemiology , England
7.
Hum Vaccin Immunother ; : 2127572, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2087651

ABSTRACT

To inform the public and policy makers, we investigated and compared the risk of cerebral venous sinus thrombosis (CVST) after SARS-Cov-2 vaccination or infection using a national cohort of 2,643,699 individuals aged 17 y and above, alive, and resident in Wales on 1 January 2020 followed up through multiple linked data sources until 28 March 2021. Exposures were first dose of Oxford-ChAdOx1 or Pfizer-BioNTech vaccine or polymerase chain reaction (PCR)-confirmed SARS-Cov-2 infection. The outcome was an incident record of CVST. Hazard ratios (HR) were calculated using multivariable Cox regression, adjusted for confounders. HR from SARS-Cov-2 infection was compared with that for SARS-Cov-2 vaccination. We identified 910,556 (34.4%) records of first SARS-Cov-2 vaccination and 165,862 (6.3%) of SARS-Cov-2 infection. A total of 1,372 CVST events were recorded during the study period, of which 52 (3.8%) and 48 (3.5%) occurred within 28 d after vaccination and infection, respectively. We observed slight non-significant risk of CVST within 28 d of vaccination [aHR: 1.34, 95% CI: 0.95-1.90], which remained after stratifying by vaccine [BNT162b2, aHR: 1.18 (95% CI: 0.63-2.21); ChAdOx1, aHR: 1.40 (95% CI: 0.95-2.05)]. Three times the number of CVST events is observed within 28 d of a positive SARS-Cov-2 test [aHR: 3.02 (95% CI: 2.17-4.21)]. The risk of CVST following SARS-Cov-2 infection is 2.3 times that following SARS-Cov-2 vaccine. This is important information both for those designing COVID-19 vaccination programs and for individuals making their own informed decisions on the risk-benefit of vaccination. This record-linkage approach will be useful in monitoring the safety of future vaccine programs.

8.
BMJ Open ; 12(9): e059813, 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2078962

ABSTRACT

INTRODUCTION: Shielding aimed to protect those predicted to be at highest risk from COVID-19 and was uniquely implemented in the UK during the COVID-19 pandemic. Clinically extremely vulnerable people identified through algorithms and screening of routine National Health Service (NHS) data were individually and strongly advised to stay at home and strictly self-isolate even from others in their household. This study will generate a logic model of the intervention and evaluate the effects and costs of shielding to inform policy development and delivery during future pandemics. METHODS AND ANALYSIS: This is a quasiexperimental study undertaken in Wales where records for people who were identified for shielding were already anonymously linked into integrated data systems for public health decision-making. We will: interview policy-makers to understand rationale for shielding advice to inform analysis and interpretation of results; use anonymised individual-level data to select people identified for shielding advice in March 2020 and a matched cohort, from routine electronic health data sources, to compare outcomes; survey a stratified random sample of each group about activities and quality of life at 12 months; use routine and newly collected blood data to assess immunity; interview people who were identified for shielding and their carers and NHS staff who delivered healthcare during shielding, to explore compliance and experiences; collect healthcare resource use data to calculate implementation costs and cost-consequences. Our team includes people who were shielding, who used their experience to help design and deliver this study. ETHICS AND DISSEMINATION: The study has received approval from the Newcastle North Tyneside 2 Research Ethics Committee (IRAS 295050). We will disseminate results directly to UK government policy-makers, publish in peer-reviewed journals, present at scientific and policy conferences and share accessible summaries of results online and through public and patient networks.


Subject(s)
COVID-19 , State Medicine , Humans , Wales , Quality of Life , Pandemics , Patient Compliance
9.
Sci Rep ; 12(1): 16406, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2050525

ABSTRACT

There is a need for better understanding of the risk of thrombocytopenic, haemorrhagic, thromboembolic disorders following first, second and booster vaccination doses and testing positive for SARS-CoV-2. Self-controlled cases series analysis of 2.1 million linked patient records in Wales between 7th December 2020 and 31st December 2021. Outcomes were the first diagnosis of thrombocytopenic, haemorrhagic and thromboembolic events in primary or secondary care datasets, exposure was defined as 0-28 days post-vaccination or a positive reverse transcription polymerase chain reaction test for SARS-CoV-2. 36,136 individuals experienced either a thrombocytopenic, haemorrhagic or thromboembolic event during the study period. Relative to baseline, our observations show greater risk of outcomes in the periods post-first dose of BNT162b2 for haemorrhagic (IRR 1.47, 95%CI: 1.04-2.08) and idiopathic thrombocytopenic purpura (IRR 2.80, 95%CI: 1.21-6.49) events; post-second dose of ChAdOx1 for arterial thrombosis (IRR 1.14, 95%CI: 1.01-1.29); post-booster greater risk of venous thromboembolic (VTE) (IRR-Moderna 3.62, 95%CI: 0.99-13.17) (IRR-BNT162b2 1.39, 95%CI: 1.04-1.87) and arterial thrombosis (IRR-Moderna 3.14, 95%CI: 1.14-8.64) (IRR-BNT162b2 1.34, 95%CI: 1.15-1.58). Similarly, post SARS-CoV-2 infection the risk was increased for haemorrhagic (IRR 1.49, 95%CI: 1.15-1.92), VTE (IRR 5.63, 95%CI: 4.91, 6.4), arterial thrombosis (IRR 2.46, 95%CI: 2.22-2.71). We found that there was a measurable risk of thrombocytopenic, haemorrhagic, thromboembolic events after COVID-19 vaccination and infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thrombocytopenia , Venous Thromboembolism , BNT162 Vaccine , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Hemorrhage , Humans , SARS-CoV-2 , Thrombocytopenia/chemically induced , Thrombocytopenia/epidemiology , Vaccination/adverse effects , Venous Thromboembolism/chemically induced , Wales/epidemiology
10.
BMJ open ; 12(9), 2022.
Article in English | EuropePMC | ID: covidwho-2011321

ABSTRACT

Introduction Shielding aimed to protect those predicted to be at highest risk from COVID-19 and was uniquely implemented in the UK during the COVID-19 pandemic. Clinically extremely vulnerable people identified through algorithms and screening of routine National Health Service (NHS) data were individually and strongly advised to stay at home and strictly self-isolate even from others in their household. This study will generate a logic model of the intervention and evaluate the effects and costs of shielding to inform policy development and delivery during future pandemics. Methods and analysis This is a quasiexperimental study undertaken in Wales where records for people who were identified for shielding were already anonymously linked into integrated data systems for public health decision-making. We will: interview policy-makers to understand rationale for shielding advice to inform analysis and interpretation of results;use anonymised individual-level data to select people identified for shielding advice in March 2020 and a matched cohort, from routine electronic health data sources, to compare outcomes;survey a stratified random sample of each group about activities and quality of life at 12 months;use routine and newly collected blood data to assess immunity;interview people who were identified for shielding and their carers and NHS staff who delivered healthcare during shielding, to explore compliance and experiences;collect healthcare resource use data to calculate implementation costs and cost–consequences. Our team includes people who were shielding, who used their experience to help design and deliver this study. Ethics and dissemination The study has received approval from the Newcastle North Tyneside 2 Research Ethics Committee (IRAS 295050). We will disseminate results directly to UK government policy-makers, publish in peer-reviewed journals, present at scientific and policy conferences and share accessible summaries of results online and through public and patient networks.

11.
Br J Cancer ; 127(3): 558-568, 2022 08.
Article in English | MEDLINE | ID: covidwho-1947301

ABSTRACT

BACKGROUND: COVID-19 pandemic responses impacted behaviour and health services. We estimated the impact on incidence, stage and healthcare pathway to diagnosis for female breast, colorectal and non-small cell lung cancers at population level in Wales. METHODS: Cancer e-record and hospital admission data linkage identified adult cases, stage and healthcare pathway to diagnosis (population ~2.5 million). Using multivariate Poisson regressions, we compared 2019 and 2020 counts and estimated incidence rate ratios (IRR). RESULTS: Cases decreased 15.2% (n = -1011) overall. Female breast annual IRR was 0.81 (95% CI: 0.76-0.86, p < 0.001), colorectal 0.80 (95% CI: 0.79-0.81, p < 0.001) and non-small cell lung 0.91 (95% CI: 0.90-0.92, p < 0.001). Decreases were largest in 50-69 year olds for female breast and 80+ year olds for all cancers. Stage I female breast cancer declined 41.6%, but unknown stage increased 55.8%. Colorectal stages I-IV declined (range 26.6-29.9%), while unknown stage increased 803.6%. Colorectal Q2-2020 GP-urgent suspected cancer diagnoses decreased 50.0%, and 53.9% for non-small cell lung cancer. Annual screen-detected female breast and colorectal cancers fell 47.8% and 13.3%, respectively. Non-smal -cell lung cancer emergency presentation diagnoses increased 9.5% (Q2-2020) and 16.3% (Q3-2020). CONCLUSION: Significantly fewer cases of three common cancers were diagnosed in 2020. Detrimental impacts on outcomes varied between cancers. Ongoing surveillance with health service optimisation will be needed to mitigate impacts.


Subject(s)
Breast Neoplasms , COVID-19 , Carcinoma, Non-Small-Cell Lung , Colorectal Neoplasms , Lung Neoplasms , Adult , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , COVID-19/epidemiology , COVID-19 Testing , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/epidemiology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Delivery of Health Care , Female , Humans , Incidence , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Pandemics , SARS-CoV-2 , Wales/epidemiology
12.
J R Soc Med ; : 1410768221107119, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1916722

ABSTRACT

OBJECTIVES: To better understand the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among healthcare workers, leading to recommendations for the prioritisation of personal protective equipment, testing, training and vaccination. DESIGN: Observational, longitudinal, national cohort study. SETTING: Our cohort were secondary care (hospital-based) healthcare workers employed by NHS Wales (United Kingdom) organisations from 1 April 2020 to 30 November 2020. PARTICIPANTS: We included 577,756 monthly observations among 77,587 healthcare workers. Using linked anonymised datasets, participants were grouped into 20 staff roles. Additionally, each role was deemed either patient-facing, non-patient-facing or undetermined. This was linked to individual demographic details and dates of positive SARS-CoV-2 PCR tests. MAIN OUTCOME MEASURES: We used univariable and multivariable logistic regression models to determine odds ratios (ORs) for the risk of a positive SARS-CoV-2 PCR test. RESULTS: Patient-facing healthcare workers were at the highest risk of SARS-CoV-2 infection with an adjusted OR (95% confidence interval [CI]) of 2.28 (95% CI 2.10-2.47). We found that after adjustment, foundation year doctors (OR 1.83 [95% CI 1.47-2.27]), healthcare support workers [OR 1.36 [95% CI 1.20-1.54]) and hospital nurses (OR 1.27 [95% CI 1.12-1.44]) were at the highest risk of infection among all staff groups. Younger healthcare workers and those living in more deprived areas were at a higher risk of infection. We also observed that infection rates varied over time and by organisation. CONCLUSIONS: These findings have important policy implications for the prioritisation of vaccination, testing, training and personal protective equipment provision for patient-facing roles and the higher risk staff groups.

13.
Int J Popul Data Sci ; 5(4): 1715, 2020.
Article in English | MEDLINE | ID: covidwho-1893601

ABSTRACT

Background: Population-level information on dispensed medication provides insight on the distribution of treated morbidities, particularly if linked to other population-scale data at an individual-level. Objective: To evaluate the impact of COVID-19 on dispensing patterns of medications. Methods: Retrospective observational study using population-scale, individual-level dispensing records in Wales, UK. Total dispensed drug items for the population between 1 st January 2016 and 31 st December 2019 (3-years, pre-COVID-19) were compared to 2020 with follow up until 27 th July 2021 (COVID-19 period). We compared trends across all years and British National Formulary (BNF) chapters and highlighted the trends in three major chapters for 2019-21: 1-Cardiovascular system (CVD); 2-Central Nervous System (CNS); 3-Immunological & Vaccine. We developed an interactive dashboard to enable monitoring of changes as the pandemic evolves. Result: Amongst all BNF chapters, 73,410,543 items were dispensed in 2020 compared to 74,121,180 items in 2019 demonstrating -0.96% relative decrease in 2020. Comparison of monthly patterns showed average difference (D) of -59,220 and average Relative Change (RC) of -0.74% between the number of dispensed items in 2020 and 2019. Maximum RC was observed in March 2020 (D = +1,224,909 and RC = +20.62), followed by second peak in June 2020 (D = +257,920, RC = +4.50%). A third peak was observed in September 2020 (D = +264,138, RC = +4.35%). Large increases in March 2020 were observed for CVD and CNS medications across all age groups. The Immunological and Vaccine products dropped to very low levels across all age groups and all months (including the March dispensing peak). Conclusions: Reconfiguration of routine clinical services during COVID-19 led to substantial changes in community pharmacy drug dispensing. This change may contribute to a long-term burden of COVID-19, raising the importance of a comprehensive and timely monitoring of changes for evaluation of the potential impact on clinical care and outcomes.


Subject(s)
COVID-19 Drug Treatment , Cardiovascular Diseases , Humans , Pandemics , Retrospective Studies , Wales/epidemiology
14.
BMJ Open ; 12(6): e050994, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1891817

ABSTRACT

INTRODUCTION: The QCOVID algorithm is a risk prediction tool for infection and subsequent hospitalisation/death due to SARS-CoV-2. At the time of writing, it is being used in important policy-making decisions by the UK and devolved governments for combatting the COVID-19 pandemic, including deliberations on shielding and vaccine prioritisation. There are four statistical validations exercises currently planned for the QCOVID algorithm, using data pertaining to England, Northern Ireland, Scotland and Wales, respectively. This paper presents a common procedure for conducting and reporting on validation exercises for the QCOVID algorithm. METHODS AND ANALYSIS: We will use open, retrospective cohort studies to assess the performance of the QCOVID risk prediction tool in each of the four UK nations. Linked datasets comprising of primary and secondary care records, virological testing data and death registrations will be assembled in trusted research environments in England, Scotland, Northern Ireland and Wales. We will seek to have population level coverage as far as possible within each nation. The following performance metrics will be calculated by strata: Harrell's C, Brier Score, R2 and Royston's D. ETHICS AND DISSEMINATION: Approvals have been obtained from relevant ethics bodies in each UK nation. Findings will be made available to national policy-makers, presented at conferences and published in peer-reviewed journal.


Subject(s)
COVID-19 , SARS-CoV-2 , Algorithms , COVID-19/epidemiology , COVID-19/prevention & control , England/epidemiology , Humans , Pandemics/prevention & control , Retrospective Studies
15.
Int J Popul Data Sci ; 5(4): 1697, 2020.
Article in English | MEDLINE | ID: covidwho-1754159

ABSTRACT

Introduction: COVID-19 risk prediction algorithms can be used to identify at-risk individuals from short-term serious adverse COVID-19 outcomes such as hospitalisation and death. It is important to validate these algorithms in different and diverse populations to help guide risk management decisions and target vaccination and treatment programs to the most vulnerable individuals in society. Objectives: To validate externally the QCOVID risk prediction algorithm that predicts mortality outcomes from COVID-19 in the adult population of Wales, UK. Methods: We conducted a retrospective cohort study using routinely collected individual-level data held in the Secure Anonymised Information Linkage (SAIL) Databank. The cohort included individuals aged between 19 and 100 years, living in Wales on 24th January 2020, registered with a SAIL-providing general practice, and followed-up to death or study end (28th July 2020). Demographic, primary and secondary healthcare, and dispensing data were used to derive all the predictor variables used to develop the published QCOVID algorithm. Mortality data were used to define time to confirmed or suspected COVID-19 death. Performance metrics, including R2 values (explained variation), Brier scores, and measures of discrimination and calibration were calculated for two periods (24th January-30th April 2020 and 1st May-28th July 2020) to assess algorithm performance. Results: 1,956,760 individuals were included. 1,192 (0.06%) and 610 (0.03%) COVID-19 deaths occurred in the first and second time periods, respectively. The algorithms fitted the Welsh data and population well, explaining 68.8% (95% CI: 66.9-70.4) of the variation in time to death, Harrell's C statistic: 0.929 (95% CI: 0.921-0.937) and D statistic: 3.036 (95% CI: 2.913-3.159) for males in the first period. Similar results were found for females and in the second time period for both sexes. Conclusions: The QCOVID algorithm developed in England can be used for public health risk management for the adult Welsh population.


Subject(s)
COVID-19 , Adult , Aged , Aged, 80 and over , Algorithms , Cohort Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , Wales/epidemiology , Young Adult
16.
Hum Vaccin Immunother ; 18(1): 2031774, 2022 12 31.
Article in English | MEDLINE | ID: covidwho-1722106

ABSTRACT

Vaccination programs against COVID-19 vary globally with estimates of vaccine effectiveness (VE) affected by vaccine type, schedule, strain, outcome, and recipient characteristics. This study assessed VE of BNT162b2 and ChAdOx1 vaccines against PCR positive SARS-CoV-2 infection, hospital admission, and death among adults aged 50 years and older in Wales, UK during the period 7 December 2020 to 18 July 2021, when Alpha, followed by Delta, were the predominant variants. We used individual-level linked routinely collected data within the Secure Anonymized Information Linkage (SAIL) Databank. Data were available for 1,262,689 adults aged 50 years and over; coverage of one dose of any COVID-19 vaccine in this population was 92.6%, with coverage of two doses 90.4%. VE against PCR positive infection at 28-days or more post first dose of any COVID-19 vaccine was 16.0% (95%CI 9.6-22.0), and 42.0% (95%CI 36.5-47.1) seven or more days after a second dose. VE against hospital admission was higher at 72.9% (95%CI 63.6-79.8) 28 days or more post vaccination with one dose of any vaccine type, and 84.9% (95%CI 78.2-89.5) at 7 or more days post two doses. VE for one dose against death was estimated to be 80.9% (95%CI 72.1-86.9). VE against PCR positive infection and hospital admission was higher for BNT162b2 compared to ChAdOx1. In conclusion, vaccine uptake has been high among adults in Wales and VE estimates are encouraging, with two doses providing considerable protection against severe outcomes. Continued roll-out of the vaccination programme within Wales, and globally, is crucial in our fight against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Middle Aged , SARS-CoV-2 , Wales/epidemiology
17.
Vaccine ; 40(8): 1180-1189, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1621088

ABSTRACT

BACKGROUND: While population estimates suggest high vaccine effectiveness against SARS-CoV-2 infection, the protection for health care workers, who are at higher risk of SARS-CoV-2 exposure, is less understood. METHODS: We conducted a national cohort study of health care workers in Wales (UK) from 7 December 2020 to 30 September 2021. We examined uptake of any COVID-19 vaccine, and the effectiveness of BNT162b2 mRNA (Pfizer-BioNTech) against polymerase chain reaction (PCR) confirmed SARS-CoV-2 infection. We used linked and routinely collected national-scale data within the SAIL Databank. Data were available on 82,959 health care workers in Wales, with exposure extending to 26 weeks after second doses. RESULTS: Overall vaccine uptake was high (90%), with most health care workers receiving theBNT162b2 vaccine (79%). Vaccine uptake differed by age, staff role, socioeconomic status; those aged 50-59 and 60+ years old were 1.6 times more likely to get vaccinated than those aged 16-29. Medical and dental staff, and Allied Health Practitioners were 1.5 and 1.1 times more likely to get vaccinated, compared to nursing and midwifery staff. The effectiveness of the BNT162b2 vaccine was found to be strong and consistent across the characteristics considered; 52% three to six weeks after first dose, 86% from two weeks after second dose, though this declined to 53% from 22 weeks after the second dose. CONCLUSIONS: With some variation in rate of uptake, those who were vaccinated had a reduced risk of PCR-confirmed SARS-CoV-2 infection, compared to those unvaccinated. Second dose has provided stronger protection for longer than first dose but our study is consistent with waning from seven weeks onwards.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , BNT162 Vaccine , Cohort Studies , Health Personnel , Humans , Prospective Studies , SARS-CoV-2 , Wales/epidemiology , Young Adult
18.
BMJ Paediatr Open ; 5(1): e001049, 2021.
Article in English | MEDLINE | ID: covidwho-1238538

ABSTRACT

Background: Better understanding of the role that children and school staff play in the transmission of SARS-CoV-2 is essential to guide policy development on controlling infection while minimising disruption to children's education and well-being. Methods: Our national e-cohort (n=464531) study used anonymised linked data for pupils, staff and associated households linked via educational settings in Wales. We estimated the odds of testing positive for SARS-CoV-2 infection for staff and pupils over the period August- December 2020, dependent on measures of recent exposure to known cases linked to their educational settings. Results: The total number of cases in a school was not associated with a subsequent increase in the odds of testing positive (staff OR per case: 0.92, 95% CI 0.85 to 1.00; pupil OR per case: 0.98, 95% CI 0.93 to 1.02). Among pupils, the number of recent cases within the same year group was significantly associated with subsequent increased odds of testing positive (OR per case: 1.12, 95% CI 1.08 to 1.15). These effects were adjusted for a range of demographic covariates, and in particular any known cases within the same household, which had the strongest association with testing positive (staff OR: 39.86, 95% CI 35.01 to 45.38; pupil OR: 9.39, 95% CI 8.94 to 9.88). Conclusions: In a national school cohort, the odds of staff testing positive for SARS-CoV-2 infection were not significantly increased in the 14-day period after case detection in the school. However, pupils were found to be at increased odds, following cases appearing within their own year group, where most of their contacts occur. Strong mitigation measures over the whole of the study period may have reduced wider spread within the school environment.


Subject(s)
COVID-19 , Child , Humans , SARS-CoV-2 , Schools , Semantic Web , Wales/epidemiology
19.
Age Ageing ; 50(1): 25-31, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1026910

ABSTRACT

BACKGROUND: mortality in care homes has had a prominent focus during the COVID-19 outbreak. Care homes are particularly vulnerable to the spread of infectious diseases, which may lead to increased mortality risk. Multiple and interconnected challenges face the care home sector in the prevention and management of outbreaks of COVID-19, including adequate supply of personal protective equipment, staff shortages and insufficient or lack of timely COVID-19 testing. AIM: to analyse the mortality of older care home residents in Wales during COVID-19 lockdown and compare this across the population of Wales and the previous 4 years. STUDY DESIGN AND SETTING: we used anonymised electronic health records and administrative data from the secure anonymised information linkage databank to create a cross-sectional cohort study. We anonymously linked data for Welsh residents to mortality data up to the 14th June 2020. METHODS: we calculated survival curves and adjusted Cox proportional hazards models to estimate hazard ratios (HRs) for the risk of mortality. We adjusted HRs for age, gender, social economic status and prior health conditions. RESULTS: survival curves show an increased proportion of deaths between 23rd March and 14th June 2020 in care homes for older people, with an adjusted HR of 1.72 (1.55, 1.90) compared with 2016. Compared with the general population in 2016-2019, adjusted care home mortality HRs for older adults rose from 2.15 (2.11, 2.20) in 2016-2019 to 2.94 (2.81, 3.08) in 2020. CONCLUSIONS: the survival curves and increased HRs show a significantly increased risk of death in the 2020 study periods.


Subject(s)
COVID-19 Testing , COVID-19 , Homes for the Aged/statistics & numerical data , Infection Control , Nursing Homes/statistics & numerical data , Aged , COVID-19/mortality , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Testing/methods , COVID-19 Testing/standards , Female , Health Status Disparities , Humans , Infection Control/methods , Infection Control/organization & administration , Infection Control/statistics & numerical data , Male , Mortality , Needs Assessment , Personal Protective Equipment/supply & distribution , Risk Assessment , SARS-CoV-2/isolation & purification , Wales/epidemiology , Workload/standards
20.
BMJ Open ; 10(10): e043010, 2020 10 21.
Article in English | MEDLINE | ID: covidwho-889902

ABSTRACT

INTRODUCTION: The emergence of the novel respiratory SARS-CoV-2 and subsequent COVID-19 pandemic have required rapid assimilation of population-level data to understand and control the spread of infection in the general and vulnerable populations. Rapid analyses are needed to inform policy development and target interventions to at-risk groups to prevent serious health outcomes. We aim to provide an accessible research platform to determine demographic, socioeconomic and clinical risk factors for infection, morbidity and mortality of COVID-19, to measure the impact of COVID-19 on healthcare utilisation and long-term health, and to enable the evaluation of natural experiments of policy interventions. METHODS AND ANALYSIS: Two privacy-protecting population-level cohorts have been created and derived from multisourced demographic and healthcare data. The C20 cohort consists of 3.2 million people in Wales on the 1 January 2020 with follow-up until 31 May 2020. The complete cohort dataset will be updated monthly with some individual datasets available daily. The C16 cohort consists of 3 million people in Wales on the 1 January 2016 with follow-up to 31 December 2019. C16 is designed as a counterfactual cohort to provide contextual comparative population data on disease, health service utilisation and mortality. Study outcomes will: (a) characterise the epidemiology of COVID-19, (b) assess socioeconomic and demographic influences on infection and outcomes, (c) measure the impact of COVID-19 on short -term and longer-term population outcomes and (d) undertake studies on the transmission and spatial spread of infection. ETHICS AND DISSEMINATION: The Secure Anonymised Information Linkage-independent Information Governance Review Panel has approved this study. The study findings will be presented to policy groups, public meetings, national and international conferences, and published in peer-reviewed journals.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Delivery of Health Care/standards , Pandemics/prevention & control , Pneumonia, Viral/therapy , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , Risk Factors , SARS-CoV-2 , Wales/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL